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SHARED INTEGER, FLOATING POINT,
POLYNOMIAL, AND VECTOR MULTIPLIER

BACKGROUND

1. Field of the Invention

The present invention relates generally to multipliers, and
in particular to methods and mechanisms for performing
numerous types of multiplication with the same multiplier
circuitry.

2. Description of the Related Art

Modern-day processors often need to perform several dif-
ferent types of multiplication (e.g., integer, floating point,
vector, polynomial). The multipliers used by processors are
typically large, resource intensive circuits. Implementing
numerous separate multipliers to perform each type of mul-
tiplication can consume a large amount of die space. Die
space on a processor is limited in availability and typically
there is only so much die space on the processor available for
multiplier circuits. The less space taken up by the multipliers,
the more space is available for other circuits, and therefore the
number and size of the multipliers should be reduced as much
as possible.

SUMMARY

In one embodiment, a shared multiplier may be configured
to perform several different types of multiply operations on
input operands. For example, the multiplier may perform
integer, floating point, and polynomial multiply operations.
Additionally, the shared multiplier may perform scalar and
vector multiply operations. The multiplier may be configured
to perform any of these multiply operations on a given clock
cycle depending on the operating mode of the multiplier. The
multiplier may also be configured to perform multiply opera-
tions on input operands of with any of various bit-lengths, and
the bit-lengths may vary from operation to operation.

In one embodiment, the multiplier may be utilized to cal-
culate a product of a multiplier operand and a multiplicand
operand. The multiplier may include a plurality of encoders
and multiplexers. The encoders may generate encoder output
values which may be coupled to the multiplexers to select
partial products generated from the multiplicand operand.
Each encoder may be configured to generate an encoder out-
put value based on two adjacent bits of the multiplier operand,
such as when performing a polynomial multiply operation.
Each encoder may also be configured to generate an encoder
output value based on three adjacent bits of the multiplier
operand, such as when performing an integer or floating point
multiply operation.

The encoder output values may be coupled to a plurality of
multiplexers. Each multiplexer may select from a plurality of
partial products, and the selection may be based on a respec-
tive encoder output value. The partial products may be gen-
erated from the multiplicand operand and may represent vari-
ous multiples (e.g., 1x, —=1x, 2x, =2x, polynomial 3%, 0) of the
multiplicand operand. The selected partial products may be
received by an adder tree, and the adder tree may reduce the
partial products on successive levels of the adder tree. The
adder tree may include a plurality of carry save adders (CSAs)
arranged into a plurality of levels. The adder tree may be
configured to route carry terms to a first portion of CSAs and
to route sum terms to a second portion of CSAs.

A first output may be generated from the first and second
portions of CSAs, and in one embodiment, the first output
may be an integer product. Alternatively, if the input operands
are floating point operands, then the first output may be a
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floating point product. A second output may be generated
from the second portion of CSAs. In one embodiment, the
second output may be a polynomial product.

In other embodiments, various methods for performing
multiplication may be implemented. One method may
include generating a sum term and a carry term in each CSA
ofthree top-level CSAs of an adder tree. The three carry terms
may be conveyed to a first middle-level CSA and the three
sum terms may be conveyed to a second middle-level CSA. A
sum term may be generated from the second middle-level
CSA and this sum term may be a polynomial product of the
input operands. The sum and carry terms of the middle-level
CSAs may be conveyed to a bottom-level CSA, and the sum
and carry terms of the bottom-level CSA may be generated
and added to form an integer or floating point product of the
input operands.

These and other features and advantages will become
apparent to those of ordinary skill in the art in view of the
following detailed descriptions of the approaches presented
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the methods and
mechanisms may be better understood by referring to the
following description in conjunction with the accompanying
drawings, in which:

FIG. 1 is a block diagram that illustrates one embodiment
of'a multi-purpose multiplier.

FIG. 2 is the input portion of a multiplier in accordance
with one or more embodiments.

FIG. 3 is a truth table for a modified booth encoder in
accordance with one or more embodiments.

FIG. 4 is a block diagram that illustrates a 32-bit by 32-bit
multiplier in accordance with one or more embodiments.

FIG. 5A is a block diagram of one embodiment of a mul-
tiplier partial product array.

FIG. 5B is a block diagram of one embodiment of a mul-
tiplier partial product array.

FIG. 5C is a block diagram of one embodiment of a mul-
tiplier partial product array.

FIG. 6 is a generalized flow diagram illustrating one
embodiment of a method for reducing partial products in a
shared multiplier.

FIG. 7 is a generalized flow diagram illustrating one
embodiment of a method for performing multiply operations
in a shared multiplier.

FIG. 8 is a block diagram of one embodiment of a system.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having ordi-
nary skill in the art should recognize that the various embodi-
ments may be practiced without these specific details. In
some instances, well-known structures, components, signals,
computer program instructions, and techniques have notbeen
shown in detail to avoid obscuring the approaches described
herein. It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not necessar-
ily been drawn to scale. For example, the dimensions of some
of the elements may be exaggerated relative to other ele-
ments.

This specification includes references to “one embodi-
ment”. The appearance of the phrase “in one embodiment” in
different contexts does not necessarily refer to the same
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embodiment. Particular features, structures, or characteristics
may be combined in any suitable manner consistent with this
disclosure. Furthermore, as used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure (includ-
ing the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “A processor
comprising a cache . . . ” Such a claim does not foreclose the
processor from including additional components (e.g., a net-
work interface, a crossbar).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to” perform
a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs the task
ortasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the
specified unit/circuit/component is not currently operational
(e.g., is not on). The units/circuits/components used with the
“configured to” language include hardware—for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component is “configured to” perform one or more tasks is
expressly intended not to invoke 35 U.S.C. §112, sixth para-
graph, for that unit/circuit/component. Additionally, “config-
ured to” can include generic structure (e.g., generic circuitry)
that is manipulated by software and/or firmware (e.g., an
FPGA or a general-purpose processor executing software) to
operate in manner that is capable of performing the task(s) at
issue. “Configured to” may also include adapting a manufac-
turing process (e.g., a semiconductor fabrication facility) to
fabricate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

“First,” “Second,” etc. As used herein, these terms are used
as labels for nouns that they precede, and do not imply any
type of ordering (e.g., spatial, temporal, logical) unless
explicitly defined as such. For example, in an adder tree with
six CSAs, the terms “first” and “second” CS As can be used to
refer to any two of the six CSAs.

“Based On.” As used herein, this term is used to describe
one or more factors that affect a determination. This term does
not foreclose additional factors that may affect a determina-
tion. That is, a determination may be solely based on those
factors or based, at least in part, on those factors. Consider the
phrase “determine A based on B.” While B may be a factor
that affects the determination of A, such a phrase does not
foreclose the determination of A from also being based on C.
In other instances, A may be determined based solely on B.

Referring now to FIG. 1, a block diagram illustrating one
embodiment of a multi-purpose multiplier is shown. In vari-
ous embodiments, multiplier 10 may be incorporated within
one or more execution units within a processor, and the pro-
cessor may be included within a system on chip (SoC), an
application specific integrated circuit (ASIC), or any of vari-
ous other similar devices. Also, there may be more than one
processor incorporated within a SoC. Multiplier 10 shown in
FIG. 1 may also be combined with other similar multipliers to
create a larger multiplier to multiply larger bit-width oper-
ands.

Multiplier 10 may include selection logic that is configured
to select multiplier operand 18 and multiplicand operand 12
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from among a plurality of different potential sources. Typi-
cally, one of the two operands in the multiplication operation
will be defined as the multiplicand operand and the other
operand will be defined as the multiplier operand, though the
assignment may be swapped. The potential sources of multi-
plier 10 may include one or more of the following: an integer
operand, a packed integer operand, a floating point operand, a
packed floating point operand, a polynomial operand, a
packed polynomial operand, or the result of a previous itera-
tive multiplication instruction. Multiplier 10 may also operate
onsigned or unsigned input operands and may perform any of
various types of multiplication (e.g., integer, floating point,
polynomial, scalar, vector). Furthermore, multiplier 10 may
be implemented in a pipelined fashion to allow for new mul-
tiplicand and multiplier operands to be received on each clock
cycle.

Multiplicand operand 12 may be coupled to partial product
generator 14, and partial product generator 14 may generate
several partial products based on multiplicand operand 12.
For example, generator 14 may generate shifted and/or
negated values of operand 12, such as -1x, 2x, -2x, and
polynomial 3x. The “polynomial 3x” term may be more
succinctly referred to herein as a “3x” term, which is not to be
confused with a traditional 3x multiplication term. These
partial products, along with the original multiplicand operand
(1x) and a 0 term, may be coupled to multiplexers 16A-I.

Multiplier operand 18 may be coupled to booth encoders
20, and booth encoders 20 may generate encoder output val-
ues based on the bits of operand 18. In one embodiment, when
multiplier 10 is operating in integer or floating point multi-
plication mode, booth encoders 20 may generate encoder
output values based on groups of three adjacent bits of oper-
and 18. The lowest bit of the three adjacent bits may overlap
with the highest bit of the next group of three adjacent bits of
operand 18. In another embodiment, when multiplier 10 is in
polynomial multiplication mode, booth encoders 20 may
generate encoder output values based on two adjacent bits of
operand 18. The outputs from booth encoders 20 may be
conveyed to multiplexers 16A-I to select the corresponding
partial products. Each multiplexer 16 A-1 is representative of
any number of multiplexers that may be used to select a partial
product from the multiplicand operand based on the booth
encoding of the relevant bits of the multiplier operand.

Multiplexers 16A-1 may be configured to select partial
products based on the encoding values received from booth
encoders 20. The selected partial products are then routed to
the top level of the adder tree. The top level includes 3:2 carry
save adders (CSAs) 22, 24, and 26. A 3:2 CSA, also referred
to as a full adder, is configured to generate sum and carry
outputs from three inputs. The sum and carry outputs may
also be referred to as sum and carry terms. The three inputs
may be referred to as A, B, and C, and the sum output may be
calculated as: sum=A XOR B XOR C. The carry output may
be calculated as: carry=(A AND B) OR (B AND C) OR (A
AND C). The 3:2 CSA may be implemented in any suitable
fashion to calculate the sum and carry outputs. 4:2 CSA 32
may perform similar calculations as 3:2 CSAs 22-30 except
with four inputs instead of three. 4:2 CSA 32, like each 0f 3:2
CSAs 22-30, may also generate a sum output and a carry
output from its respective inputs. In various embodiments, the
inputs and outputs of CSAs 22-32 may be any of various
bit-lengths. For example, in one embodiment, the inputs and
outputs of CSAs 22-32 may be 32-bits long.

The solid line outputs from CSAs 22, 24, and 26 are the
carry outputs, and these carry outputs may be coupled to CSA
28. The dotted line outputs from CSAs 22, 24, and 26 are the
sum outputs, and these sum outputs may be coupled to CSA
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30. A polynomial product may only be based on the sum
outputs generated from adding the partial products. There-
fore, by configuring the adder tree of multiplier 10 such that
the sum outputs are not added together with any of the carry
outputs, the polynomial product of multiplicand operand 12
and multiplier operand 18 may be generated by not including
any of the propagated carry outputs.

The sum output (dotted line) of CSA 30 may be coupled to
an output of multiplier 10 as the polynomial product output of
the multiplication operation. Both carry and sum outputs of
CSAs 28 and 30 may be coupled as inputs to 4:2 CSA 32. The
outputs of CSA 32 may be added by adder 34 and then the
output of adder 34 may be the regular product. The regular
product may be the result of an integer or floating point
multiplication operation.

In one embodiment, the multiplicand and multiplier oper-
ands may be 8-bit values, and multiplier 10 may perform 8-bit
polynomial multiplication. In another embodiment, multi-
plier 10 may perform 8-bit integer or floating point multipli-
cation. In a further embodiment, the multiplicand and multi-
plier operands may be 16-bit values, and multiplier 10 may
perform 16-bit polynomial multiplication. In a still further
embodiment, multiplier 10 may perform 16-bit integer or
floating point multiplication. In one embodiment, multiplier
10 may switch between each of these modes and perform
operations on an as-needed basis as requested by the host
processor.

In other embodiments, multiplier 10 may be implemented
by replacing one or more of the 3:2 CSAs with half-adders
(i.e., 2:2 CSAs), depending on the bit-width of multiplicand
operand 12 and multiplier operand 18. Also, in other embodi-
ments, other multipliers may be implemented with other
numbers of levels and CSAs to perform multiplication opera-
tions of other bit-sizes. In these other embodiments, the adder
tree utilized with multiplier 10 may include more than three
levels, more than six CSAs, and/or other sizes of CSAs (e.g.,
5:2, 6:2). Adder trees with any number of levels may be
utilized, and the structure shown in FIG. 1 may be replicated
for these larger adder trees. For larger adder trees, the sum
outputs of upper levels may be routed to a first portion of
CSAs on the lower levels, and the carry outputs of upper
levels may be routed to a second portion of CSAs. The sum
and carry outputs may be kept separate within the adder tree,
such that a polynomial output may be generated separately
from the carry outputs that propagate through the adder tree.

It is noted that other embodiments may include other com-
binations of components, including subsets or supersets of the
components shown in FIG. 1 and/or other components. While
one instance of a given component may be shown in FIG. 1,
other embodiments may include one or more instances of the
given component. Similarly, throughout this detailed descrip-
tion, one or more instances of a given component may be
included even if only one is shown, and/or embodiments that
include only one instance may be used even if multiple
instances are shown.

Turning now to FIG. 2, one embodiment of the input por-
tion of a multiplier is shown. Multiplicand operand 12 may be
coupled to various circuit elements, including shifter 40,
XOR gate 42, and multiplexers 44 and 46. Shifter 40 may shift
the bits of operand 12 one bit to the left, effectively doubling
the value of operand 12. The shifted version of the multipli-
cand may be coupled to an input of XOR gate 42, and the
other input to XOR gate 42 may be the original version of
multiplicand operand 12. The output of XOR gate 42 may be
the +3x term of the multiplicand, which may be utilized for
polynomial multiplication.
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The inputs to multiplexers 44-48 include various shifted
and inverted versions of multiplicand operand 12, such as the
multiplicand multiplied by various factors —1x, -2x, +2x, and
+3x. The inputs to multiplexers 44-48 also include the origi-
nal multiplicand value (+1x) and 0. In one embodiment, each
of'the multiplexers 16 A-I of FIG. 1 may be implemented with
the four multiplexers 44-50 as shown in FIG. 2. The +1x bus
of the multiplicand is inverted at one of the inputs of multi-
plexer 44, and the other input to multiplexer 44 is the +3x bus
of the multiplicand. The polynomial select line may select
between the —1x term and the +3x term, and the polynomial
select line may also be coupled to booth encoders 20. Multi-
plexer 46 may select between 0, +1x, and +2x of the multi-
plicand. Multiplexer 48 may select between 0, —-1x (3x), and
-2x of the multiplicand. Multiplexer 50 may select between
the positive and negative partial products.

For polynomial multiplication, the sign select for multi-
plexer 50 may be forced to zero to make the multiplexer select
the +2x term instead of the —2x term. In another embodiment,
the —1x term of multiplicand operand 12 may be generated on
a separate bus rather than inverting the +1x term of multipli-
cand operand 12. The separate —1x bus may drive the poly-
nomial +3x term during polynomial multiplication.

Referring now to FIG. 3, a truth table for a modified booth
encoder in accordance with one or more embodiments is
shown. Encoder table 60 shows the encoder output values
which may be generated by a booth encoder, such as booth
encoders 20 of FIG. 1. Bits 2-0 are shown in table 60, and
these bits are representative of adjacent bits from a multiplier
operand. An encoder may receive a multiplier operand and
generate values shown in the “Regular” column when the
multiplier circuit is in a first mode and generate values shown
in the “Polynomial” column when the multiplier circuit is in
a second mode. Regular multiplication (e.g., integer multipli-
cation, floating point multiplication) may utilize three bits
(bits 2,1, and 0) to determine the corresponding booth encod-
ing. Polynomial multiplication may utilize two bits (bits 2 and
1) to determine the corresponding booth encoding.

The encoder may determine the value based on each group
of three adjacent bits of the multiplier operand when in the
first mode. The first mode may be utilized for performing an
integer or floating point multiplication operation. A lowest bit
of' the three adjacent bits may overlap with the highest bit of
the next three adjacent bits of the multiplier operand. When in
the second mode, for performing a polynomial multiplication
operation, the encoder may utilize groups of two adjacent bits
of'the multiplier, effectively ignoring the third bit column (Bit
0) when generating the corresponding encoder output value.
The various terms of the multiplicand operand (0x, 1x, 2x,
-1x (3%), —2x) may be coupled to the inputs of one or more
multiplexers, and the encoder output values generated by the
booth encoders may select from these multiplicand terms. In
one embodiment, to use the same booth encoders for both
polynomial and regular multiplication operations, the booth
encoders may force Bit 0 to “0” for polynomial multiplica-
tion. This may minimize the delay involved in performing
booth encoding for polynomial multiplication mode.

Turning now to FIG. 4, ablock diagram of one embodiment
of a 32-bit by 32-bit multiplier is shown. Multiplier 70
includes four instances of 16-bit by 16-bit multipliers. These
four instances include multipliers 80, 82, 84, and 86. Each
multiplier 80-86 may perform a 16-bit by 16-bit multiply.
Each multiplier may include a carry save adder (CSA) tree as
shown in FIG. 1. The carry outputs of the first level of CSAs
may be coupled to the inputs of a first CSA on the second level
of CSA tree. The sum outputs of the first level of CSAs may
be coupled to the inputs of a second CSA on the second level
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of CSA tree. The sum outputs of the first level of CSAs are
kept separate from the carry outputs of the first level of CSAs.
In this way, the CSA tree may be able to generate both a
product of polynomial multiplication and a product of integer
or floating point multiplication. The sum output of the second
CSA on the second level may be coupled to the third level
CSA and may also be coupled to an output multiplexer.

The inputs to multiplier 70 may be a multiplicand operand
(source 1) and a multiplier operand (source 2). The upper 16
bits, or word high (WH), of source 1 may be coupled to masks
72 and 76. The lower 16 bits, or word low (WL), of source 1
may be coupled to masks 74 and 78. Masks 72-78 may couple
portions of the received operands to the corresponding mul-
tiplier and may mask other portions to zero depending on the
type of multiply being performed and the bit-width of the
operands being multiplied.

Each multiplier 80-86 is coupled to a corresponding pair of
multiplexers 94-100. For example, multiplier 80 is coupled to
multiplexers 94A-B. In particular, the sum output of the sec-
ond CSA on the second level of multiplier 80 is coupled to
multiplexer 94B, the sum output of the third-level CSA is
coupled to multiplexer 94B, the carry output of the third-level
CSA is coupled to multiplexer 94A, and a zero input is
coupled to multiplexer 94A. The multiplexer 94A may
include other circuitry for manipulating data, masking certain
bits, and/or shifting received data. Depending on the type of
operation being performed, multiplexer 94A may realign the
data received from the 4:2 CSA before passing the data to 4:2
CSA 88. Multiplexers 96A, 98A, and 100A may be config-
ured to operate in a similar fashion.

The select lines coupled to multiplexers 94-100 may be
based on the operating mode of multiplier 70. In various
embodiments, the operating modes of multiplier 70 may
include a first mode for regular multiplication (e.g., integer,
floating point) and a second mode for polynomial multiplica-
tion. If host multiplier 70 is performing a regular multiply
operation, the select line to multiplexer 94A may select the
carry output from the bottom-level 4:2 CSA of multiplier 80,
and the select line to multiplexer 94B may select the sum
output from the bottom-level 4:2 CSA of multiplier 80. If
multiplier 70 is performing a polynomial multiply operation,
the select line to multiplexer 94A may select the zero input,
and the select line to multiplexer 94B may select the sum
output from the second middle-level 3:2 CSA of multiplier
80.

The outputs of multiplexers 94-100 are coupled to a final
adder tree, and the final adder tree includes 4:2 CSAs 88, 90,
and 92 and adder 102. In one embodiment, the final adder tree
may generate a single final result by combining the sum and
carry outputs of multipliers 80-86. The final result may rep-
resent a product of the multiplicand operand (source 1) and
the multiplier operand (source 2). In another embodiment, the
final adder tree may generate four separate sum outputs when
multiplier 70 is performing a first vector multiply operation of
four 8-bit by 8-bit input values. In a further embodiment, the
final adder tree may generate two separate sum outputs when
multiplier 70 is performing a second vector multiply opera-
tion of two 16-bit by 16-bit input values.

In various embodiments, multiplier 70 may perform vari-
ous different types of multiplication operations, such as float-
ing point, integer, and polynomial, as well as vector or scalar
operations of each of these types of multiplications. For
example, in one embodiment, multiplier 70 may perform a
vector polynomial multiply operation. Each of the input oper-
ands may consist of four 8-bit values, and a polynomial mul-
tiply operation may be performed on the four separate pairs of
8-bit operands. The result may be a vector polynomial prod-
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uct, which may consist of four separate 16-bit polynomial
products packed into a single 64-bit output operand.

It is noted that the 32-bit by 32-bit size of multiplier 70 is
representative of one possible embodiment. In other embodi-
ments, multiplier 70 may be any of various other sizes or may
be part of larger multipliers. For example, in another embodi-
ment, multiplier 70 may be part of a 64-bit by 64-bit multi-
plier, which may include four instances of multiplier 70.
Other multiplier circuits may include various numbers of
instances of multiplier 70 to form other sizes of multipliers. In
another example, eight instances of multiplier 70 may be
utilized to perform vector multiplication of eight separate
32-bit by 32-bit multiply operations. Other variations of mul-
tipliers that include two or more instances of multiplier 70 are
possible and are contemplated.

Turning now to FIG. 5A, a block diagram of one embodi-
ment of a multiplier partial product array is shown. The block
diagram illustrates a parallelogram configuration for the
adder trees of amultiplier. The routing of sum and carry terms
between the various CSAs of the adder tree may allow for
various different sizes of source operands to be multiplied in
a multiplication operation. The shaded portions of partial
product array 110 show which portions of the multiplier may
beused for 8-bit integer or 8-bit polynomial multiplication. In
one embodiment, array 110 may represent the adder tree of
multiplier 70 (of FIG. 4). The shaded portions of array 110
depict which portions of the array may be used for the four
separate 8-bit by 8-bit multiply operations. The shaded por-
tions of array 110 are chosen so that the propagated carry and
sum terms from the four separate multiply operations do not
overlap or interfere with each other. In one embodiment,
masks 72-78 (of FIG. 4) may mask portions of the input
multiplicand and multiplier operands to zero, wherein the
masked portions correspond to regions of the input operands
that are not utilized for the four operations. As shown in FI1G.
5A, four separate 8-bit by 8-bit multiply operations may be
performed simultaneously using multiplier partial product
array 110.

Turning now to FIG. 5B, a block diagram of one embodi-
ment of a multiplier partial product array is shown. The
shaded portions of multiplier partial product array 112 depict
which portions of multiplier 70 may be used for two separate
16-bit by 16-bit multiply operations. The shaded portions of
array 112 are chosen so that the two separate multiply opera-
tions do not overlap.

Turning now to FIG. 5C, a block diagram of one embodi-
ment of a multiplier partial product array is shown. The
entirety of multiplier partial product array 114 may be used
for performing a 32-bit by 32-bit multiply operation. In one
embodiment, array 114 may correspond to the adder tree in
multiplier 70.

Turning now to FIG. 6, one embodiment of a method for
reducing partial products in a shared multiplier is shown. For
purposes of discussion, the steps in this embodiment are
shown in sequential order. It should be noted that in various
embodiments of the method described below, one or more of
the elements described may be performed concurrently, in a
different order than shown, or may be omitted entirely. Other
additional elements may also be performed as desired.

In one embodiment, a sum term and a carry term may be
generated in each of three top-level CSAs of an adder tree
(block 120). The top-level CS As of the adder tree may receive
a plurality of partial products generated from a multiplicand
operand and based on a multiplier operand. The adder tree
may include three levels, and the adder tree may be config-
ured to add the partial products from input operands of vary-
ing widths. In one embodiment, the top-level CSAs may be
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3:2 CSAs. In another embodiment, the top-level CSAs may
be 4:2 CSAs. In a further embodiment, the top-level CSAs
may be any of various other sizes of CSAs. In a still further
embodiment, each of the top-level CSAs may be any of vari-
ous sizes of CSAs. For example, a first top-level CSA may be
a2:2 CSA, asecond top-level CSA may be a3:2 CSA, and so
on.

The three carry terms from the top-level CSAs may be
conveyed to the inputs of a first middle-level CSA (block
122). The three sum terms from the top-level CSAs may be
conveyed to the inputs of a second middle-level CSA (block
124). The first middle-level CSA may generate a sum term
and a carry term from the three carry terms received from the
top-level CSAs, and the second middle-level CSA may gen-
erate a sum term and a carry term from the three sum terms
received from the top-level CSAs (block 126). In one embodi-
ment, the middle-level CSAs may be 3:2 CSAs. In other
embodiments, the middle-level CSAs may be any of various
other sizes of CSAs. The sum term generated by the second
middle-level CSA may be a polynomial product of the mul-
tiplicand operand and multiplier operand.

The sum and carry terms generated by the middle-level
CSAs may be conveyed to a bottom-level CSA (block 128). In
one embodiment, the bottom-level CSA may be a 4:2 CSA,
although in other embodiments, the bottom-level CSA may
be any of various other sizes of CSAs. The bottom-level CSA
may generate a sum term and a carry term (block 130). The
sum term and the carry term generated by the bottom-level
CSA may represent an integer product of the multiplicand
operand and the multiplier operand. In another embodiment,
the sum term and the carry term may represent a floating point
product of the multiplicand operand and the multiplier oper-
and. In one embodiment, the sum term and the carry term may
be added together in a single adder to generate a single term
which represents the integer or floating point product. In
another embodiment, the sum term and the carry term may be
added together in a final adder tree along with other sum and
carry terms from other adder trees.

Referring now to FIG. 7, one embodiment of a method for
performing multiply operations in a shared multiplier is
shown. For purposes of discussion, the steps in this embodi-
ment are shown in sequential order. It should be noted that in
various embodiments of the method described below, one or
more of the elements described may be performed concur-
rently, in a different order than shown, or may be omitted
entirely. Other additional elements may also be performed as
desired.

An encoder may determine whether the multiplier is in a
first or second mode (block 140). If the multiplier is in a first
mode, the encoder may generate encoder output values based
on three adjacent bits of a multiplier operand (block 142). In
one embodiment, the first mode may be an integer multipli-
cation mode or a floating point multiplication mode. Further-
more, scalar or vector multiplication operation of integer or
floating point operands may be performed in the first mode.
The lowest bit of the three adjacent bits of the multiplier
operand may overlap with the highest bit from the next group
of three bits of the multiplier operand. In one embodiment, a
multiplier may include a plurality of encoders, and each of the
multiple encoders may generate a separate encoder output
value. In various embodiments, the encoders may be referred
to as booth encoders or modified booth encoders.

If the multiplier is in a second mode, then the encoder may
generate encoder output values based on two adjacent bits of
the multiplier operand (block 144). In one embodiment, the
second mode may be a polynomial multiplication mode, and
this mode may be utilized for either scalar or vector polyno-
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mial multiplication operations. A plurality of partial products
may be generated from the multiplicand operand (block 146).
The partial products may be shifted and/or negated versions
of the multiplicand operand, representative of the different
multiples of the multiplicand operand (0x, 1x, —1x, 2%, and
-2x for the first mode and 0x, 1x, 2x, and polynomial 3x for
the second mode). Then, for each encoder output value, a
partial product may be selected from the plurality of partial
products (block 148). In one embodiment, the partial prod-
ucts may be selected by one or more multiplexers. The mul-
tiplexers may be arranged in stages to facilitate efficient tim-
ing and routing of partial products to the next stage of the
multiplier. The encoder output values may be coupled as
select signals to the multiplexers.

The selected partial products may be conveyed to an adder
tree (block 150). The adder tree may include a plurality of
CSAs arranged into a plurality of levels. The adder tree may
be configured to reduce the plurality of partial products on
successive levels of the adder tree, such that at the bottom of
the tree, one or two terms may remain that represent a sum of
the plurality of partial products. The top level of the adder tree
may generate a plurality of sum outputs and carry outputs
(block 152). The adder tree may add the plurality of sum
outputs separately from the plurality of carry outputs on suc-
cessive levels (block 154). Sum and carry outputs may also be
generated on lower levels of the adder tree, and these sum and
carry outputs may also be routed separately through the adder
tree.

At the bottom of the adder tree, the sum and carry outputs
may be added together to generate an integer product of the
multiplier and multiplicand operands. If the multiplier is in a
first mode, the integer product may be generated and routed to
an output or to another stage of the multiplier. A polynomial
product may be generated by adding the plurality of sum
outputs if the multiplier is in a second mode.

In one embodiment, the multiplier operand may include a
plurality of multiplier values and the multiplicand operand
may include a plurality of multiplicand values. In this
embodiment, a vector multiply operation may be performed
and a vector product may be generated by the multiplier. The
multiplier may include a plurality of adder trees to add each of
the individual values separately. The vector operation may be
any of various types of vector operations, such as vector
polynomial, vector integer, or vector floating point multipli-
cation.

Turning nextto FIG. 8, ablock diagram of one embodiment
of'a system 160 is shown. As shown, system 160 may repre-
sent chip, circuitry, components, etc., of a desktop computer
170, laptop computer 180, tablet computer 190, cell phone
200, or otherwise. In the illustrated embodiment, the system
160 includes at least one instance of an integrated circuit 168
coupled to an external memory 162. Integrated circuit 168
may include one or more instances of multiplier 70. In
another embodiment, integrated circuit 168 may include one
or more instances of multiplier 10 (of FIG. 1).

The integrated circuit 168 is coupled to one or more periph-
erals 164 and the external memory 162. A power supply 166
is also provided which supplies the supply voltages to the
integrated circuit 168 as well as one or more supply voltages
to the memory 162 and/or the peripherals 164. In various
embodiments, power supply 166 may represent a battery
(e.g., arechargeable battery in a smart phone, laptop or tablet
computer). In some embodiments, more than one instance of
the integrated circuit 168 may be included (and more than one
external memory 162 may be included as well).

The memory 162 may be any type of memory, such as
dynamic random access memory (DRAM), synchronous
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DRAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM (including mobile versions of the SDRAMs
such as mDDR3, etc., and/or low power versions of the
SDRAMs such as LPDDR2, etc.), RAMBUS DRAM
(RDRAM), static RAM (SRAM), etc. One or more memory
devices may be coupled onto a circuit board to form memory
modules such as single inline memory modules (SIMMs),
dual inline memory modules (DIMMs), etc. Alternatively, the
devices may be mounted with an integrated circuit 168 in a
chip-on-chip configuration, a package-on-package configu-
ration, or a multi-chip module configuration.

The peripherals 164 may include any desired circuitry,
depending on the type of system 160. For example, in one
embodiment, peripherals 164 may include devices for various
types of wireless communication, such as wifi, Bluetooth,
cellular, global positioning system, etc. The peripherals 164
may also include additional storage, including RAM storage,
solid state storage, or disk storage. The peripherals 164 may
include user interface devices such as a display screen,
including touch display screens or multitouch display
screens, keyboard or other input devices, microphones,
speakers, etc.

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become apparent
to those skilled in the art once the above disclosure is fully
appreciated. It is intended that the following claims be inter-
preted to embrace all such variations and modifications.

What is claimed is:

1. A multiplier comprising:

a plurality of encoders, wherein each encoder of the plu-

rality of encoders is configured to:

generate an encoder output value based on three bits
from a multiplier operand when operating in a first
mode; and

generate the encoder output value based on two bits from
the multiplier operand and force a third bit of the
multiplier operand to zero when operating in a second
mode, wherein the two bits and the third bit are three
distinct bits; and

an adder tree, wherein the adder tree comprises a plurality

of carry save adders (CSAs) arranged into a plurality of

levels, and wherein the adder tree is configured to:

couple the encoder output values to inputs of a top level
of CSAs;

route carry terms to a first portion of CSAs and route sum
terms to a second portion of CSAs;

generate a first output from the first and second portions
of CSAs when operating in the first mode; and

generate a second output from the second portion of
CSAs when operating in the second mode, wherein
the second output is a polynomial product.

2. The multiplier as recited in claim 1, wherein the first
output is an integer product and wherein the second output is
a polynomial product.

3. The multiplier as recited in claim 1, wherein the first
output is a floating point product and wherein the second
output is a polynomial product.

4. The multiplier as recited in claim 1, wherein the multi-
plier further comprises a plurality of multiplexers for each
encoder, wherein a multiplicand operand is coupled to a first
input of a first multiplexer of the plurality of multiplexers,
wherein a polynomial 3x term of the multiplicand operand is
coupled to a second input of the first multiplexer, and wherein
a polynomial select line is coupled to the first multiplexer.
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5. The multiplier as recited in claim 1, wherein the first
mode is an integer multiplication mode, and wherein the
second mode is a polynomial multiplication mode.

6. An execution unit comprising four multipliers, wherein
each multiplier comprises an adder tree and a plurality of
encoders, wherein each adder tree comprises three levels of
carry save adders (CSAs), wherein a top level comprises three
CSAs, wherein a middle level comprises two CSAs, wherein
a bottom level comprises one CSA, and wherein each adder
tree is configured to:

couple output values from the plurality of encoders to

inputs of the three CSAs on the top level;

couple carry outputs from the three CSAs on the top level

to inputs of a first CSA on the middle level;

couple sum outputs from the three CSAs on the top level to

inputs of a second CSA on the middle level;
wherein each encoder of the plurality of encoders is con-
figured to:
generate an encoder output value based on three bits
from a multiplier operand when operating in a first
mode; and
generate the encoder output value based on two bits from
the multiplier operand and force a third bit of the
multiplier operand to zero when operating in a second
mode, wherein the two bits and the third bit are three
distinct bits,
wherein the second mode is a polynomial multiplication
mode.
7. The execution unit as recited in claim 6, wherein each
adder tree is configured to:
couple sum and carry outputs from the first and second
CSAs on the middle level to inputs of a bottom level
CSA, wherein the bottom level CSA is a 4:2 CSA; and

generate a sum output and a carry output from the bottom
level CSA.

8. The execution unit as recited in claim 7, wherein each
multiplier comprises a plurality of multiplexers for each
encoder of the plurality of encoders, wherein a multiplicand
operand is coupled to a first input of a first multiplexer of the
plurality of multiplexers, wherein a polynomial 3x term of the
multiplicand operand is coupled to a second input of the first
multiplexer, and wherein a polynomial select line is coupled
to the first multiplexer.

9. The execution unit as recited in claim 8, wherein the
output result is a vector polynomial product.

10. The execution unit as recited in claim 9, wherein the
vector polynomial product is generated from four pairs of
8-bit multiplicand and multiplier operands, and wherein the
vector polynomial product comprises four separate 16-bit
polynomial products packed into a single output operand.

11. The execution unit as recited in claim 7, further com-
prising eight output multiplexers, wherein sum and carry
outputs from the bottom level CSA of each adder tree are
coupled to two respective output multiplexers.

12. The execution unit as recited in claim 11, wherein a sum
output from the bottom level CSA is coupled to a first output
multiplexer, wherein a sum output from the second CSA on
the middle level is coupled to the first output multiplexer, and
wherein the carry output from the bottom level CSA is
coupled to the second output multiplexer.

13. The execution unit as recited in claim 12, wherein the
sum output from the second CSA on the middle level is a
polynomial product.

14. The execution unit as recited in claim 12, wherein the
execution unit is configured to:
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select a sum output of the bottom level CSA as an output of
the first output multiplexer responsive to operating in a
first mode;

select the carry output of the bottom level CSA as an output

of'the second output multiplexer responsive to operating
in the first mode;

select the sum output from the second CSA on the middle

level as an output of the first output multiplexer respon-
sive to operating in a second mode; and

select zero as an output of the second output multiplexer

responsive to operating in the second mode.

15. A method comprising:

generating a sum term and a carry term in each CSA of

three top-level CSAs of an adder tree;

conveying the three carry terms to a first middle-level CSA

of the adder tree;

conveying the three sum terms to a second middle-level

CSA of the adder tree;

generating a sum term and a carry term in the first middle-

level CSA;

generating a sum term and a carry term in the second

middle-level CSA, wherein the sum term is a polyno-
mial product of a multiplicand operand and a multiplier
operand;

generating an encoder output value from each of a plurality

of encoders based on three bits from a multiplier oper-
and when operating in a first mode;
generating the encoder output value from each of the plu-
rality of encoders based on two bits from the multiplier
operand and forcing a third bit of the multiplier operand
to zero when operating in a second mode, wherein the
two bits and the third bit are three distinct bits, and

conveying the encoder output values to inputs of the three
top-level CSAs of the adder tree,

wherein the second mode is a polynomial multiplication

mode.
16. The method as recited in claim 15, further comprising:
conveying the sum and carry terms from the first and sec-
ond middle-level CSAs to a bottom-level CSA; and

generating a sum term and a carry term in the bottom-level
CSA, wherein the sum and carry terms represent an
integer product of the multiplicand operand and the mul-
tiplier operand.

17. The method as recited in claim 16, wherein a plurality
of partial products are coupled to the three top-level CSAs of
the adder tree, wherein the three sum terms and three carry
terms of the three top-level CSAs are generated by adding the
plurality of partial products, and wherein the plurality of
partial products are generated from the multiplicand operand
and the multiplier operand.

18. The method as recited in claim 15, further comprising:

coupling the multiplicand operand to a first input of a first

multiplexer of a plurality of multiplexers for each
encoder;

coupling a polynomial 3x term of the multiplicand operand

to a second input of the first multiplexer; and

coupling a polynomial select line to the first multiplexer.
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19. A method comprising:

generating a plurality of encoder output values, wherein
each encoder output value of the plurality of encoder
output values is generated based on three adjacent bits of
a multiplier operand responsive to a first mode being
selected, and wherein each encoder output value is gen-
erated based on two adjacent bits of the multiplier oper-
and and a third bit of the multiplier operand is forced to
zero responsive to a second mode being selected,
wherein the two adjacent bits and the third bit are three
distinct bits;

generating a plurality of partial products from a multipli-

cand operand;

for each encoder output value, selecting a partial product

from the plurality of partial products based on a respec-
tive encoder output value;

conveying the plurality of selected partial products to an

adder tree;
generating a plurality of sum outputs and a plurality of
carry outputs on a top level of the adder tree; and

adding the plurality of sum outputs separately from the
plurality of carry outputs on successive levels of the
adder tree,

generating a first output from the adder tree responsive to

operating in the first mode; and

generating a second output from the adder responsive to

operating in the second mode, wherein the second output
is a polynomial product.

20. The method as recited in claim 19, further comprising:

generating the first output as an integer product from the

plurality of sum outputs and the plurality of carry out-

puts responsive to operating in the first mode; and
generating the polynomial product from the plurality of

sum outputs responsive to operating in the second mode.

21. The method as recited in claim 19, further comprising:

coupling the multiplicand operand to a first input of a first

multiplexer of a plurality of multiplexers for each
encoder;

coupling a polynomial 3x term of the multiplicand operand

to a second input of the first multiplexer; and

coupling a polynomial select line to the first multiplexer.

22. The method as recited in claim 19, further comprising
receiving a multiplier operand and a multiplicand operand
prior to generating the plurality of encoder output values,
wherein the multiplier operand comprises a plurality of mul-
tiplier values, and wherein the multiplicand operand com-
prises a plurality of multiplicand values.

23. The method as recited in claim 22, further comprising:

generating a plurality of integer products from the plurality

of sum outputs and the plurality of carry outputs respon-
sive to operating in the first mode; and

generating a plurality of polynomial products from the

plurality of sum outputs responsive to operating in the
second mode.

24. The method as recited in claim 19, wherein the adder
tree comprises a plurality of carry save adders (CSAs)
arranged into a plurality of levels, and wherein the adder tree
is configured to reduce the plurality of partial products on
successive levels of the adder tree.
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